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ABSTRACT

,o The numerical solution of many problems in continuum dynamics is seriously
limited by the computation rates attainable on computers with serial architecture.
Parallel processing machines can achieve much higher rates. However, applying
additional processors to a calculation is only part of the solution. This
research was undertaken to develop parallel algorithms for explicit and implicit,
Lagrangian and Eulerian finite difference schemes for computational continuum
dynamics in one spatial dimension.

First, the explicit conservation equations in the Lagrangian reference frame

were readily reformulated for concurrent processing. Second, an implicit solution

was derived for these equations. This is important because it yields unconditional
stability. The parallelism is achieved bia a block implicit numerical scheme.
Third, a rezoning algorithm was employed with each Lagrangian integration stem
to transform the mesh back to the Eulerian reference frame. The algorithmic
development path lead to a parallelization of the processing in blocks of the
firite difference zones. At each step of this research project, the derived numerical
methods provided effective algorithms for exploiting the architectural advantages
of the HEP HI000 (Heterogeneous Element Processor) computer. The computational
timing data shows significant speed-up with the number of processes.

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE

............ •o , ,.. o . -............................................. %. ,,....... )............



AIR FORCZ OPYT'Z qr, VfTTFT rrn RYrc qw.'0

Distvj' .

Section I - Introduction MaTH %. .
Chi f, resbhneal Infor'ationuDivilnO

Simulation codes. The conservation laws of volume, mass, momentum, and

energy apply to any continuum material: solid, liquid, gas, plasma, or multi-

phase. Hence, the algorithms of computational continuum dynamics are very

important for the solution of many scientific problems. When the application

is changed from one material to another, only the material law (equation of

state, constitutive relation, or rate relation) changes. Thus, there is a

similarity of structure between the hydrocodes (gas and liquid dynamics), the

wavecodes (solid dynamics), and the magnetohydrocodes (plasma dynamics) that

are the computer implementations of schemes for continuum dynamics calcula-

tions.

It is well known that computer simulation codes are cost-effective tools

in continuum dynamics research. Indeed, a variety of problems arising in such

e fields as aeronautics, controlled fusion, meteorology, reactor safety, and

structural analysis provide strong motivation for the development of higher

computing rates. However, the limits of current computing power prevent the

simulation of many important problems to the desired levels of temporal and

• spatial resolution. The speed of light barrier imposes a theoretical limit on

what can be achieved with serial architecture.

Parallel processing. To achieve higher computing rates it has become

necessary to perform calculations in parallel. The computer architecture with

* the greatest degree of parallelism is labeled Multiple Instruction stream,

Multiple Data stream (MIMD). An example of a machine of this type is the HEP

H1000 computer manufactured by the Denelcor Corporation.

In principle, many hydrocodes and wavecodes could be moved to a parallel

processor. However, applying additional processors to a computational task is

not, in general, sufficient to produce significant speed-up. Indeed, the

development of parallel algorithms is an area of research vital to the

effectiveness of parallel processors. 1 Recent research indicates that the

parallelization of a program should be organized from the top down. 2,3 That

is, the existing structure and organization of a program impose a limitation

on the achievable improvement in computation time. Consequently, it becomes

necessary to reformulate algorithms and to write new code.
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Parallel algorithms. The direct approach to the construction of parallel

algorithms for continuum dynamics calculations can be quite complicated.

Rather than plunge into a development project intended to generate a code with

broad three-dimensional capabilities, we have taken a step-by-step approach

suggested by Darrell Hicks. 4 Thus, in a modular fashion, the algorithms at

each level of complexity could be verified as they were derived. Our approach

to the numerical solution of the problems of continuum dynamics generated

algorithms well suited for parallel architecture in general and for the HEP

computer in particular. The approach is based on a progression from the

simplest hydrocode (one-dimensional, single-phase, explicit, Lagrangian)

through the most complex continuum dynamics codes. The latter programs can

involve two or three dimensions, multiphase material, a mixture of explicit

and implicit differencing, arbitrary rezoning coordinate systems (Lagrangian

or Eulerian), or variable time steps from one spatial region to another.

Summary of results. The specific objectives of the research reported in

this paper involve a three-step process for the development of parallel

algorithms for one-dimensional simulation codes. 5 First, the algorithms were

deduced for an explicit, one-dimensional, single-phase Lagrangian hydrocode.

Its inherently simple data structure made it straightforward to integrate the

volume, momentum, and energy equations for each zone, or block of zones, in

parallel. However, the parallelization of the Eulerian and certainly the

implicit calculations was far less obvious. For the second step, a block-

implicit method was derived to allow the implicit differencing of the equa-

tions. The separation into blocks required the development of a formula for

decoupling the inherently interconnected difference equations.

Third, the programs were converted from Lagrangian to Eulerian coor-

dinates in such a way that the conserved quantities are preserved in the par-

allel processing scheme. The conversions from Lagrangian to Eulerian were

achieved via a rezoning technique that has precursors in the work of

F. Harlow6 (Particle In Cell codes) and in the work of W. Johnson (PIC codes

converted to continuum simulations). The method is referred to as the Harlow-

Johnson rezoning technique.
5

Algorithms that permit concurrent processing were derived for each of
four numerical solutions to the one-dimensional hydrodynamics equations.

These are the explicit and implicit, Lagrangian and Eulerian finite difference
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equations. In fact, somewhat more was accomplished because, for each of the

Lagrangian and Eulerian coordinate systems, the explicit and implicit dif-

ferencing can be blended in any specified ratio.

At all three steps of the code development and for all four differencing

schemes, explicit and implicit Lagrangian and Eulerian, the parallel

algorithms introduce a certain amount of computational inefficiency. For the

explicit differencing, this only consists of the overhead associated with the

initiation of the parallel paths and with their synchronization. However, the

implicit differencing involves extra work that has to be done to divide the

calculations into independent segments in addition to the overhead due to

initializing and synchronizing.

A mathematical model was developed to analyze the processing time. The

parallel algorithms derived for this project achieve a nearly optimal paral-

lelization of the calculations within the reference frame of this two-

parameter least squares fit to the data.

Foundations for future work. The results of this research project pro-

vide the foundations for extensions to more elaborate hydrocodes. Through

stages of increasing complexity the block-by-block parallelization of multi-

phase and multidimensional hydrocodes can be achieved. The simulation of

multiphase or multi material flow is readily accomplished in an Eulerian coor-

dinate system.4 Discussions of two-phase flow models and their relevance to

reactor safety may be found in Hicks7 , 8 , 9 , 10 and Ransom and Hicks 1 1. (One of

the important problems in reactor safety is the need for fast simulators and

predictors to assist operators in handling situations such as the event at

Three Mile Island.) The Harlow-Johnson rezoning technique can be modified to

deliver dynamic rezoning (also known as adaptive mesh) methods. 4 , 1 2 Finally,

extensions to multidimensions may be achieved by operator splitting. 1 3

Outline of this report. While the development of hydrocodes is a long

standing achievement, it is the utilization of new and unique advances in

computer architecture for hydrocode calculations that makes our research

important and timely. In each of the three steps, the crucial questions

concern the extent to which the algorithms can be separated into calculations

that are performed concurrently. The algorithmic details are developed in

Sections III and IV. Converting to Eulerian coordinates is the topic of Sec-

tion V. The computational results are presented in Section VI. This includes

3
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verification of the hydrodynamic simulations and analysis of the computational

speed-up as a function of the amount of parallelism.

The design of a parallel algorithm is interrelated with the particular

architecture of the parallel processor. 1'2'3 That is, although some progress

has been made,14 general specifications for machine-independent algorithms

have not yet been agreed upon. In Section I, we begin by providing a

description of the architectural implications for parallel algorithms on the

HEP computer.

Section II - MIND Architecture

HEP hardware. There are three primary categories for computer architec-

tures according to their parallel processing capabilities: SISD, SIMD, and

MIMD. SISD stands for Single Instruction stream, Single Data stream. The

typical serial computer has SISD architecture. SIMD stands for Single

Instruction stream, Multiple Data stream. Vector machines such as the CRAY-1

have this architecture. The multiple data streams consist of the components

of the vectors. The instruction mode is still single stream (or serial)

although the instructions may generate vector operations. MIMD stands for

Multiple Instruction stream, Multiple Data stream. The HEP (Heterogeneous

Element Processor) by Denelcor has MIMD architecture.

The HEP computer is designed to combine from one up to 16 Process Execu-

tion Modules (PEM's) in a single computer. Each PEM is an eight-segment pipe-

lined processor consisting of eight Function Units in the Instruction Process-

ing Unit. The Function Units include the hardware for initiating parallel

processing and for an integer addition, a floating point addition, a multipli-

cation, and several divides.

With every cycle of the machine (100 nanoseconds), one of the Function

Units can undertake a new calculation. Thus, multiple pieces of data can be

in the pipeline of a PEM simultaneously. The calculations are the result of

instructions selected from different instruction streams.

Within a PEM, as many as 50 (the standard software limit or 64 the hard-

ware limit) processes or lists of instructions can be making computational

progress at the same time. While the active processes in a PEM are each

assigned their own sets of registers and data memory, they can also access

shared memory. It is this ability to synchronize multiple processes from the

4



same job or task that makes the HEP computer a true MIMO machine. More

information on the HEP architecture and on its applications can be found in

the references by Smith2 and Jordan. 3

HEP software. The HEP computer achieves its parallel processing

capabilities by extending FORTRAN 77 in two ways.* With their first implemen-

tation of a compiler, Denelcor provided the CREATE statement and the asynchro-

nous variable. In their more recent release, they have replaced these with

callable subroutines which make the FORTRAN portable. Even though portability

is a good objective, the authors are disappointed by this change of heart at

Denel cor.

Although the subroutine calls serve the same purposes, the CREATE state-

ment and the asynchronous variable gave the programmer more explicit language

for coding calculations that are intended to be performed concurrently. In

any event, a discussion of these two terms is appropriate for this report

because it provides a good explanation of the considerations that must be

taken into account when processing is divided into and reunited from parallel

paths.

1. The CREATE SUBROUTINE statement is similar (syntactically) to the well-
known CALL SUBROUTINE statement in FORTRAN. It has the effect of
creating a copy of (or "cloning") the original subroutine and executing
the copy in a calculational stream parallel to the mainstream.

2. The asynchronous ("dollar-sign") variable is any acceptable FORTRAN vari-
able name prefixed with a "$". Asynchronous variables are used for
communication between parallel computational streams. Asynchronous vari-
ables have two states, "full" and "empty". If a FORTRAN assignment
statement contains an asynchronous variable on the right hand side of the
equal sign, then the calculation waits until the state of the
asynchronous variable is full. If its state is full, then the value is
fetched and the state is set to empty. If the left hand side of the
equal side of a FORTRAN assignment statement is an asynchronous variable,
then the assignment of its value waits until its state is empty. Then,
when the assignment is made, its state is reset to full.

The diagram in Figure 1 presents a visual image of the parallel process-

ing as implemented on the HEP computer. At CREATE statements, the

The work for this contract-'was implemented in the FORTRAN language.

Denelcor has also developed the parallel processing features described

in this section for the scientific programming language C.

5



fork ointjoin point

single stream main stream single stream

*CREATE statement * RETURN statement.
*Asynchronous variable * Asynchronous variable

emptied, filled.

Figure 1. Fork and join points in a FORTRAN program mark the beginning and
end, respectively, of concurrent (or parallel) processing segments of the
code.

computational fl ow can "fork" into a number of parallel paths which the

operating system assigns to the available processors. An empty asynchronous

variable prevents the main stream from continuing beyond the point at which it

needs the results from the parallel streams. A "join" point is marked by the

return from a CREATE statement and an asynchronous variable that must be reset

to full by the last parallel stream to finish processing.

One of the crucial aspects of parallel processing is, of course, the

development of software capable of coordinating concurrent computational

tasks. Denelcor has chosen a straightforward extension of FORTRAN for the

HEP. The "fork" and "join" procedures make the HEP computer immediately
accessible to the traditional scientific programming community. A collection

of lectures on various aspects of concurrent computation contains further

background material on parallel processing algorithms and architecture.15 The

6



HEP FORTRAN 77 User's Guide is useful for more specific information on the HEP

software. 16

Section III - Parallel Algorithms -- Explicit Lagrangian

The first step of the research was the application of the parallel

processing attributes of the HEP, as described above, to an explicit, one-

dimensional Lagrangian hydrodynamics simulation. In this case, it is a

straightforward exercise to solve the difference equations in a zone-by-zone

parallelization. When the number of processes is significantly less than the

number of zones, it is necessary for the sake of efficiency to collect contig-

uous zones into blocks. The block size or granularity is simply the number of

zones divided by the number of processes.

Conservation equations. A hydrodynamic simulation is based on the

conservation laws of volume, mass, momentum, and energy. In the Lagrangian

frame, the corresponding differential equations are differenced on a mesh in

which the grid points remain fixed in the material. Let X be the Lagrangian

spatial coordinate (the one that identifies the initial location of the mass

point) and let v be the mass coordinate with units of mass per area. The two

are related by

dij = p0 dX (1)

where p is the mass density as a function of X and the zero superscript indi-

cates p is evaluated at time t = 0. Let V be the specific volume such that

V =1 .(2)

This choice of coordinates guarantees conservation of mass.

Assuming rectangular symmetry (slab geometry), the remaining conservation

laws in differential form are

* Conservation of volume:

jV = au (3)
at ap

7



9 Conservation of momentum:

au a (p + q) (4)
at 5

e Conservation of energy:

DE a [u (p + q)] (5)

where u is the velocity (or specific momentum) of a fixed point in the mass, p

is the pressure, q is the material viscosity, and E is the total specific

energy. In vector notation this system can be written as

atU _ BF(U) (6)
at ap

where

U = (V, u, E)T (7)

and

F(U) = (u, -(p + q), -u (p + q))T. (8)

As usual, the superscript T denotes the transpose of the array.

If c is the specific internal energy, then

E= + 1 u2 (9)

Taking the partial derivative of equation (9) with respect to time and substi-

tuting equations (3), (4), and (5) into the result yields an internal energy

equation

€_ (p + q) -L (0t (10)
at at~)~

in place of equation (5). This system of equations (3), (4), and (5) or (10)

is incomplete without an equation for the pressure. The system is closed with

a thermomechanical equation of state (EOS) relating p to V and c.

8



Finite difference equations. The two most common finite differencing

schemes are the von Neumann-Richtmyer and the Lax-Wendroff. 17 The former was

preferred for this work because it appears to have good accuracy and less

tendency to oscillate in response to strong shocks and rarefactions.18 For

the discretization of the time and mass per area independent variables, the

usual convention was adopted. A superscript denotes time dependence and a

subscript indicates the location in the mass variable. With this notation,

the half integers denote time and mass centering in the mesh. Thus, the von

Neumann-Richtmyer discretization scheme for the conservation laws becomes 19

" Conservation of volume:

vn+1 .Vn un+1/2  .n+1/2
j+1/2 j+1/2 _ j+1 -u.

tn+l - tn Ij - 1P)

" Conservation of momentum:

-n+/2 _ un-I/2 n-1/2) n +q 1n-i/2

I _ (P3+1/2 J 1~/2 j " 1P-/2 +  J-1/2 j  (12)

tn+ I/2 - tn-I /2 
-j+1/2 " )j-1/2

" Energy equation:

,n+1 n 1 rn+1 n' n-n/2 vn+l n

-j+1/2 + 2Nj 11 2 + Pj/2 + j1/2 - j+1/2) . (13)
n n+/ an +/2

The EOS expresses p+I/2 in terms of V
n  nd

When real viscous effects are negligible or, at least, insufficient to

handle severe gradients in the physical properties of the material, an

artificial viscosity is superimposed to average the abrupt variations over

several adjacent zones. A well known implementation of artificial viscosity

is given by a formula due to von Neumann-Richtmyer as modified by Rosenbluth 17

and Landshoff.
20

qj+1/2 =0 if uj+ I - uj > 0 (14a)

or

qj+=/2 - Aj+1/21uj+ I - ujI if uj+ - uj ' 0 (14b)

9
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Figure 6. The block-by-block algorithm for the explicit Lagrangian calcula-
tions achieves a speed-up factor of eight to nine between 10 and 14 processes.
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Figure 7. The block-by-block algorithm for the implicit Lagrangian calcula-
tions achieves a speed-up factor of eight to nine between 10 and 14 processes.
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hardware is saturated, the processing time for n parallel processes is

approximated by

T(n) = T +IT + K T (n) (36)
s n p 0

where To(n) is the CREATE overhead for n parallel processes and K is the

number of times that forking and joining occur in the execution sequence.

Thus, the last term accounts for the parallel processing overhead, that is,

the computer time lost to the creation of the parallel processes and to the

communication between them.

The curve described by equation (36) qualitatively agrees with the plots

of the data in the timing Figures 6 through 9 up until saturation of the

hardware occurs. At that point the term 1/n Tp in the equation is replaced by

a constant. Then, the data shows very slight linear increases in processing

time with additional processes beyond the hardware saturation point. Thus,

the effect of the term K To(n) is a linear increase in processing time.

The results of the block-by-block calculations as shown in Figures 6, 7,

and 8 indicate that the speed-up factor peaks at a value between eight and

nine somewhere in the range of 10 to 14 processes. The speed-up factor

approaches this value because there are essentially nine segments in the

calculations: eight in the pipeline plus the store operation. This peaking

phenomena in the range of 10 to 14 processes has been observed by several

other investigators.
2'3'33

The timing date for the implicit Eulerian calculations as displayed in

Figure 8 was collected after the installation of the new Mass Storage System

(MSS) and additional nodes in the switch network on the HEP computer. The

result had the effect of an Eulerian routing through the switch network which

had been upgraded from two to eight nodes. The longer path for accessing data

caused a severe increase in memory latency which translates into a smaller

utilization percentage of the pipeline by a single process. Thus, the data on

Figure 9 illustrate the performance of a multiprocess code spread over several

PEM's. However, the same timing model still applies.

22
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For the explicit, Lagrangian equations (11) and (12) with equations (15),

(17), and (24), self-scheduling processes were written and implemented as

fol lows

Fork, compute time steps, join;

Fork, compute viscosities, join;

Fork, compute velocities, join;

Fork, compute volumes, join; and

Fork, compute pressures, join.

For the zone-by-zone algorithm, the self-scheduling within each fork and join

means that the processes integrate the equations within a single zone and then

ask for another zone until none remain. An asynchronous variable keeps track

of the next zone for which processing is required.

For the block-by-block algorithm, between each fork and join, a block of

NB contiguous zones is handed over to each of the Np parallel processes. The

algorithm is prescheduled by setting NpNB equal to the total number of

zones. Of course, the calculations using the zone-by-zone algorithm encoun-

tered so much contention for the asynchronous zone counter that they proved to

be quite inefficient. This approach was quickly dropped in favor of the

prescheduled blocks of contiguous zones.

Figures 6 through 9 show the computation time and speed-up factors versus

the number of processes. All cases were run with 2520 (the least common

multiple of all positive integers less than or equal to ten) zones for 400

time steps.

Ithematical model for the computation time. The data shown in these

figures can be interpreted according to the following model suggested by

discussions in articles by Buzbee, 1 Larson, 31 and Flatt. 32 Consider a

computer program that consumes a total processing time of

Tt = Ts + Tp (35)

where Tp is the total processing time spent on calculations which can be

divided into parallel processes. Ts is the processing time consumed by the

calculations that are performed serially when the program is executed in

either serial or parallel mode. Then, up until the point at which the

21
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characteristics of the problem. Hence, the finite difference scheme inte-

grates the equations exactly.
29

Two anomalies occur with the implicit versions of the code. First, as

discussed in Section IV, the loss of accuracy due to the implicit differencing

affects the results in the same way as an artificial viscosity term. So the

material discontinuities are smeared over several zones. As expected, in the

completely implicit (6 = 1 in equation (30)) Lagrangian and Eulerian simula-

tions, the rarefaction and shock are smeared over several adjacent zones.

Second, since the explicit solutions along the boundary seams are of higher

order, discrete points of greater accuracy are introduced in the material.

The overall stability of the implicit scheme holds the solution close to these

accurate boundary conditions within each block of zones.

All four differencing schemes have been coded into a single program in

which the choice of Lagrangian or Eulerian and a value of 8 in the momentum

equation (30) are selected at run time. A large number of samples of the

output from many hours of HEP computer time is displayed in the Appendix. It

includes spatial plots of the pressure at various times during the simulation

of the flow of the material in the test problem pipe. For each pressure

profile, the results are shown from simulations with one, two, and six

processes.

As an illustration of other aspects of the computer program, one pressure

profile is displayed with the corresponding plots of material velocity and

mass density. These are also shown for one, two, and six processes. The

velocity graph is a nice illustration of the increasing momentum of the

material as it bursts out of the left half of the pipe.

Timing results on the HEP. Computer codes have been written for each of

the four hydrodynamic simulations: explicit and implicit, Lagrangian and

Eulerian finite differences. To demonstrate the improvements in computational

efficiency, the results are discussed in this section for the four versions of

the hydrocode with a linear pressure-volume material law. The simple test

problem for which the exact solution is known involves shock and rarefaction

waves. The initial conditions are an ideal pressure and density shock in the

interior of a motionless slab. The boundaries are held fixed and the shock

moves forward with a rarefaction proceeding in the opposite direction.
30

20
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Thus, if +1/2 , for example, then inequality (33) reduces to

u n + / 2 t - x n  (34)3 j+1 - "

Constraints of this form are reminiscent of the CFL restriction and are some

times referred to as the material-Courant or the mass-flow-Courant restric-

tions.

This rezoning algorithm automatically conserves volume and mass.

Momentum, internal energy, and kinetic energy are each conserved individually

according to a step function or a linear interpolation for the accumulated

mass per area. The derivation of such models can be found in Hicks and

McGrath. 28 The rezoning step is included following the calculation of the new

energies. Therefore, the momentum is reassigned at time tn+1 /2 and the

volumes, pressures, and energies at time tn+1.

Section VI - Computational Results

The hydrocode written for this contract has been exercised extensively

for two reasons. First, the simulations have to be verified against hydro-

dynamic test problems. Second, and more to the point of the research objec-

tives, the speed-up achieved by the parallel algorithms has to be analyzed.

For the first of these purposes, the four versions of the code were tested on

a physical problem for which the analytic solution is known.

Rarefaction-shock simulation. A gas at standard temperature and pressure

is contained in the right half of a pipe. The material gas under otherwise

identical conditions has twice the density and a pressure of two atmospheres

in the left half of the pipe. At time zero the material is allowed to flow.

A shock moves to the right and a rarefaction to the left. They bounce off the

ends of the pipe and return to interact in the center. Thus, this single

physical problem tests the code on its ability to simulate shocks, rarefac-

tions, and interactions between them.

If a linear approximation (17) to an isentropic equation of state is used

to compute the pressures, both the shock and the rarefaction move as square

waves in the absence of viscosity. The explicit Lagrangian simulation repro-

duced this behavior identically when the Courant-Friedrichs-Lewy condition is

equal to one. In this case, the information flow in the material is along the

19



In the Lagrangia advance the zone boundary moves from xn. to xn +1 for3 3
each j. The top part Figure 5 shows the mass moving to the right. Then,

from the bottom part of the figure, we see that the rezoning step transfers

mass from zone [xj_ I , xj] to zone [xj, xj+ 1). Similarly, momentum and energy

are transferred from one zone to the next. Careful bookkeeping must be main-

tained to ensure conservation of these quantities.

Move the mesh.
I-I

U >O a
II I a S

I I a a

X. X. X.
j-1 j j+1

Rezone to the previous location.

Figure 5. The Harlow-Johnson method rezones the mesh back to its previous
location after each Lagrangian time step.

Material-Courant condition. Implicit here is the assumption that zone

boundaries do not travel further than a zone width. That is,

xn 4x1  x (32)
j-1 j j+1 (

If this constraint is violated then the rezoning gets a bit more complica-

ted. The inequality (32) is equivalent to

xn _ 4 n + At n +i/2 4 n (33)
1 j j+1 (

18



Boundary seam

tn + 1/2

t'

at-t n  -1t- j +J

Figure 4. The domain of dependence for the velocities has a half-width of
three zones when three explicit time steps 6t are required to integrate the

equations from time tn- I/2 to time tn+1/ 2.

Section V - Eulerlan Coordinates

Harlow-Johnson rezoning. Once a Lagrangian hydrocode has been construc-
ted, it can be converted to an Eulerian code by making use of the Harlow-

Johnson rezoning method. 5 Figure 5 illustrates the technique. An Eulerian

calculation is achieved in two steps. The first is a Lagrangian calculation
and the second is a rezoning of the mesh back to its original location. Since

the rezoning leaves the mesh points fixed in space, the calculation is
Eulerian. Another way of viewing this rezoning scheme is from the point of
view of operator splitting. That is, the discretization of the Eulerian
operator a/at + ua/ax is split into the advance of the Lagrangian part
(3/at) followed by the advance of the convective part (ua/ax).

17
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.4

developed, this approach to parallel algorithms for tridiagonal linear systems

(or, more generally, for the evaluation of recursive sequences) has been laid

aside for future examination.

The block implicit technique. For hydrocode calculations, the original
system of differential equations can be divided into uncoupled tridiagonal

systems by inserting spatial boundaries along which the values of the unknowns

are determined by a stable explicit scheme. Several explicit steps may be

required for each implicit integration step.

For an implicit solution in a hydrodynamics simulation, the material is

*i divided into p blocks of contiguous zones. The program forks into parallel

paths to solve the momentum equation explicitly at each of the p-1 internal

boundary seams. After synchronization, the program forks again to solve the

explicit-implicit momentum .equation (30) within each of the p blocks of zones

using the standard tridiagonal algorithm. Finally, the volume, pressures, and

energies are computed with repeated fork-parallel-join operations just as in

the explicit Lagrangian code.

Internal boundary seams. For the following discussion of the details,
assume that a temporal seam of boundary conditions is to be calculated at the

mass mesh point Pj. Let the implicit integration step at time tn be At.

Suppose that the CFL stability condition for the von Neumann-Richtmyer

explicit integration requires three time steps to advance the dependent

variables from tn to tn + At. Let

St At (31)

, -1/2 t-1/2 ttietn-1/2
and use equation (12) to advance un0 from time tn to time

+ St for i = -1, 0, 1 as shown in Figure 4. Then, since the pressures are

known in the appropriate zones up through time tn, the velocities can be

advanced from time tn-1/2 + 6t to time tn-1/2 + 2 6t. At this point, equa-

tions (11) and (13) have to be integrated in a similar manner from time tn to

time tn + 6t in the surrounding zones. Finally, the velocity is integrated

from time tn'1/2 + 2 6t to time tnl I/2 + 3 6t _ tn+1/2 to achieve u.+1/2 on
J

the internal boundary seam. Figure 4 illustrates the domain of dependence

for un+l/2 , The velocities, densities, pressures, and energies are evaluated

explicitly within this domain.

16
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A mixture of the explicit and implicit differencing, that is, a weighted

average of the explicit and the implicit terms was written into the simulation

codes in order to permit continuous variation between the completely explicit
and the completely implicit solutions. The blended form of the momentum

equation (12) is

un+1/2 u-1/2 nn+1/2 nn+1/2 n pn -1/2- qn-1/2

• J +/ -/ +/2 J12 +I/2 j-1/2

tn+1/2 - tn-I/2 1 j+1/2" -j-1/2 -j+1/2- "j-1/2 "j+1/2- "j-1/2

* (30)

As pointed out in Section 2.2 and proven in the appendix of an INEL report, 4

only the pressure term in the momentum equation has to be pushed forward in

time for the purely mechanical system to achieve unconditional stability.

Specifically, the system of equations (11) and (30) with the mechanical

equation of state (17) is unconditionally stable for e = 1.

An operator splitting approach was mapped out to extend the unconditional

stability to a thermal mechanical system. The technique separates the thermal

and mechanical parts of the rate relation for the pressure and alternately

solves the two energy equations. See a forthcoming KMSF report on uncondi-

tionally stable modifications to the von Neumann-Richtmyer differencing scheme

by Hicks and McGrath.

Recursive sequences in parallel. The implicit solution of coupled

differential equations typically leads to a tridiagonal linear system for

C- which a parallel algorithm is not immediately obvious. It is possible to

solve the equations in parallel via an a priori, symbolic inversion of the

system.4 This involves the evaluation of several recursive sequences. The

method divides a recursive sequence into parallel processes by the concurrent

( evaluation of even and odd terms (or, more generally, by the concurrent eval-

uation of the n sequences of terms whose indices are equivalent modulo n).

This is the technique mentioned in the proposal for the research

project. As discussed in the proposal, the method involves some duplication

of calculations. However, a net gain is realized from the more efficient use

of the parallel processor. Since a more natural mechanism for hydrocodes was

15



Forward differencing. In general, the time centered quantities should be

evaluated at the forward times t n+ I / 2 or t n+1 in order for the unconditional

stability of an implicit solution to be achieved. Thus, with the viscosities

omitted, the implicit form of equation (12) is

n+1/2 _ un-1/2 n+1/2 -n+1/2

u _ = - Pj+1/2 " Pj-/2 (26)
tn+1/2 - tn- 1/2 - j+1/2 - "j-1/2

The loss of second order accuracy introduced by the implicit solution is

equivalent to an artificial viscosity term. This can be seen from a two-term

Taylor series expansion. In either zone j + 1/2 or zone j - 1/2,

p n+1/2 =p~tn + 1 &t)

p(t) + 1 P(tn) At + o(At 2)

= pn + + 0(At 2 ) (27)

where the O(At2) notation indicates that terms of order At2 or of higher order

have been neglected.

Substituting equation (27) into equation (26) yields

u -+1/2 _ un- 1 /2 P -

Si-1/2 
= "P1+ "--/.j (28)tn+I/2 -tn-/ Uj+1/2 " Pj-1/2 uj+I/2 " j-1/2

where

n At -,--
n  u n  0 n  u!n J .-1 (29)j Y j+1/2 "j+1 "j 75- j-1/2 Oj Oj-I

which has the form of the artificial viscosity q as defined by equa-

tions (14). Artificial viscosity methods are employed to smooth material

discontinuities over several spatial zones. The above analysis shows that the

need for this technique in the explicit differencing is removed from the

implicit differencing.
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The modified stability condition that takes the magnitude of the viscosity

into account is
25

At 4 min A_ (24)
j a'

where

a = a {+ [(A ) + 1]1/2  (25)

Two of the references by Hicks contain a more general discussion of hydrocode

convergence problems.
26,27

Parallel segments of the code. To perform the explicit Lagrangian

integration, subroutines were constructed to compute

1. The explicit time step from the inequality (24),

2. The viscosities from equations (14),

3. The momentum from equation (12),

4. The zone volumes from equation (11), and

5. The pressures and internal energies from equation (17), (18), or (19) and

equation (13).

The main program CREATEs the designated number of copies n of the first

routine. It uses the fork and join structure of parallel programing to

compute the minimum time step for each of n different blocks of zones. The

minimum of these values is selected for the program time step. Then, in

similar fashion, the program repeats the fork-parallel-join procedure with the

same block-by-block structure for each of the four remaining sets of calcula-

tions. These kinds of parallel programming tasks are described further in a

couple of the references.
3,15

Section IV Parallel Algorithms -- Implicit Lagranglan

The object of implicit calculations for a hydrocode is the relaxation of

restrictions on the time step. Explicit time steps are usually constrained by

the CFL (Courant, Friedrichs, Lewy) 1 7 , 22 condition that is required for

stability as discussed above. The explicit solution advances the components

of equation (6) from time tn-l /2 to time tn+1/2 or from time tn to time tn+1

in terms of quantities evaluated at times tn or tn+1/ 2, respectively. Such a

centered difference scheme yields second order accuracy.

13



Vnew

tI U new

t n +  2  - t tn + 12  L

Uleft Uright

"left aright Vold

tn - ,/2 Uold tn-1/2

_I/2 j +/ Mi- _j + /IIj+ I

Figure 2. The data structure for the Figure 3. The data structure for
conservation of momentum has an explicit the conservation of volume is also
form as stated by equation (20). explicit as stated by equation (21).

6

Figures 2 and 3 also show the offsets in both time and space (mass) between

the momentum and volume equations as specified by the von Neumann-Richtmyer

di fferencing scheme.

* The explicit time step At is constrained by the CFL (Courant, Friedrichs,

Lewy)17'22 condition that is required for stability and convergence. Various

necessary and sufficient conditions on the CFL number in hydrocodes with

classical thermomechanical equations of state such as (18) or (19) are

6. contained in Richtmyer and Morton17 while some recent results for rate
dependent and related computational techniques such as subcycling have been

developed by Hicks. 23,24

The CFL stability condition requires

an+1/2 (tn+1 - tn) j - (22)j+1/2 j+1 "

for every zone. That is,

At ( min . (23)
j a
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where r > 0 is the Gruneisen parameter. This form is often used in research

involving shock waves in solids.

For the above equations of state (17), (18), and (19), it is easy to

reduce the Yon Neumann-Richtmyer implicit discretization of the internal
n+1

energy equation (13) to an explicit expression for j+1/2" If the EOS is

purely mechanical as in equation (17), meaning p depends only on V, then both

the energy equation (13) and the EOS are not needed to complete the system and

they may be omitted altogether.

One of the advantages of the parallel computer (MIMD architecture) over

* the vector computer (SIMD architecture) pertains to the parallelization of the

material law routine. These calculations do not in general vectorize.

Indeed, in certain cases, a large portion (often over 75%) of the processing

time is spent on computationally intensive material laws.

More complicated situations occur when the EOS is not as straightforward

as equations (17), (18) or (19) and when energy transport mechanisms such as

conduction become important. In such cases, equation (13) with additional

terms for energy transport mechanisms must be solved implicitly. 21 A discus-

* sion of parallel algorithms for implicit equations is contained in the follow-

ing paragraphs. More general energy equations are beyond the scope of this

article. An examination of these problems is a natural extension that the

authors would like to promote.

Data structure of the equations. The time and space structure of the

data as it has just been described leaves it in a form that is immediately

amenable for parallelization. The data structure for the conservation of

momentum is illustrated in Figure 2 while the conservation of volume is shown

in Figure 3. The discrete conservation of momentum equation (12) has the form

unew uold - ('right - 'left) r (20)

where r = At/A. and a = p + q. Similarly, the discrete conservation of volume

equation (11) has the form

Vnew =Vold + (u right - Uleft) r . (21)

t 11



where the coefficient of artificial viscosity is

A j+1/2 - c, aj+1/2 + cq Pj+ 1/ 2 IUj+l - ujI . (15)

The coefficients of the linear and quadratic terms are adjustable parameters

for particular applications c. is of order unity and cq of order one tenth.

The acoustic impedance is
a~ =CsP (16)

where cs is the sound speed of the material.

The superscripts in the difference equations (11), (12), and (13) indi-

cate the order in which they are solved. First, the velocity u is updated

from time tn 1/2 to time tn+1/2 using equation (12) where, in practice, it has

not been found necessary to extrapolate the viscosity q to time tn. Then, in

a leapfrog fashion, equation (11) is employed to vault the specific volume V

over the velocity from time tn to time tn+l. Finally, all that remains is the

energy equation (13) in which compression and viscous work contribute to the

heating of the material.

Equation of state. If the equation of state has a tractable analytic

expression for the pressure, it can be substituted into the energy equa-

tion (13). Then, upon rearranging terms, the internal energy c is advanced

* from time tn to tn+1. One such form is a tangential, linear approximation to

an isentropic equation of state

p - Po a= a0
2(V V0 ) (17)

where ao is the reference acoustic impedance of the material. Another is the

ideal gas law

C p = (y - 1) C p (18)

where y is the ratio of specific heats cV to cT. A generalization of the

ideal gas law is the Mie-Grineisen law

p = f(p) + r c p (19)

10
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* achieves a speed-up factor of eight to nine between 10 and 14 processes.
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A major objective of this research project is the maximization of the

speed-up factor
32

5(n) = Tt n

T(n) (n-1)Ts  n K T0 (n) (37)
1 + +

where Tt Tt

Tt - T(1) (38)

from equation (36). Thus, for S(n) and the efficiency
32

0

E(n) - 1 S(n) (39)

to be high, the denominator of equation (37) has to be small. This means

that, for a fixed number of processes n, a quantity limited by the hardware,

we need small values of Ts , K, and To(n).

The parallel overhead TO(n) is a machine-dependent quantity. It appears

to be proportional to n as shown above. While this is true of other machines

as well, 32 it can also be proportional to log n. 3 1  In any case, the values of

Ts and K are subject to the effectiveness of the p?-allel algorithms. Thus,

for a given machine, it is important to reduce Ts and K as much as possible in

order to achieve the highest speed-up factor and the greatest efficiency.

For the hydrocode timing data, equation (36) can be rewritten as

T (n) I+ (1 1) T +KC (n - 1) (40)T n) n -)T s + 0 C

where Ts and

T0 (n) C 0o(n - 1) (41)

have been normalized to the total time Tt. Also, equation (35) was used to

eliminate Tp which again illustrates that the timing results depend only on

the percentage of the calculations done serially and on the overhead term.

25
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An analysis of the analytic continuation of equation (40) to a differen-

tiable function shows that the speed-up factor (37) and the efficiency (39)

achieve a maximum for

1 - T 1/2
nmax K C) (42)

0f

which yields the minimum normalized computing time

Tmin ' Ts + 2(1-T s)1/2 (K Co) 1/2 - K C (43)

by substituting equation (42) into equation (40).

Least squares approximations that fit equation (40) to the data displayed

on Figures 6 through 9 yield values for Ts and CO on the order of one percent

and 10- 7 to 10- 6 , respectively. These small values for the fraction Ts of the

computer time that is spent in serial mode are an indication that the speed-up

factors S(n) are nearly optimal.

The least squares approximations were calculated to fit the data between

one and seven to nine processes. The corresponding range of values for the

parameters Ts and Co are displayed in Figure 10. Equations (42) and (43) were

used to get the values of nmax and Tmin. The achievable improvement in

computation time is a tenth of a percent or better of the serial computation

time. That is, for an MIMD machine not limited by the hardware to a speed-up

of eight to nine at 10 to 14 processes, the derived algorithms can achieve a

speed-up of more than 100 at several tens of processes.

Tmin

6 Code Version Fig. Ts  CO  k nmax (percent)

Explicit Lagrangian 6 .022±.002 1-5x10-7  5 31-60 .057-.084

Implicit Lagrangian 7 .0065±.0005 1.1-1.2xi0 -6  6 20-21 .098-.102

Explicit Eulerian 8 .012±.001 4-5x10" 7  5 28-31 .075-.081

Implicit Eulerian 9 .0054±.0002 1.9-2.5x10" 7  6 40-46 .048-.053

Figure 10. The improvement in computation time Tmin that can be achieved with
the parallel algorithms for computational continuum dynamics is a tenth of a
percent or better of the serial processing time. The column labeled k is the

*b number of fork-join occurrences per time step. Thus, for these data,
K = 400k.

26

* m| • I - . .- - a . .. .. . " " " - ,1



A remark concerning processing overhead. One final remark concerns the

trade-off between the CREATE statement and the asynchronous variables. The

* value of K can be altered by reducing the number of CREATEs. The greatest

effect can be achieved by eliminating the repeated fork-parallel-join approach

employed for both the zone-by-zone and the block-by-block algorithms. To

accomplish this, the calculations for viscosities, velocities, volumes, and

* pressures were incorporated into a single subroutine. A program was written

to fork into multiple copies of this routine at the beginning of the

simulation. Then each process in either zone-by-zone or block-by-block

fashion performed the complete set of calculations for that time step. At the

end of the time step, synchronization was achieved through an asynchronous

variable, but the process was not terminated by returning to the mainstream.

Instead, all processes continued with the next time step. They did not join

until the integration was complete.

Of course, the synchronization step constitutes a "join" in the proc-

essing to be followed by another "fork". Thus, this approach did not provide

the expected improvement in the speed-up factor. Evidently, the memory

contention for the asynchronous variable outweighs the savings in CREATE

overhead. For these reasons, we believe that the timing figures illustrate

close to the optimum speed-up achievable for these hydrocode calculations.

t.

4.2
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APPENDIX

The attached figures illustrate the performance of the simulation code on

the test problem defined in Section VI. Figures 1 through 10 contain 45

illustrations of pressure profiles. Figure 1 shows spatial plots of the

pressure at five different times during the simulation performed by the

explicit Lagrangian code with only one process. Figures 2 and 3 each show the

same five pressure plots generated by the explicit Lagrangian code with two

and six processes, respectively.

Figures 4 and 5 show pressure plots generated by the implicit Lagrangian

code with one, two, and six processes. Similarly, Figures 6 and 7 display

results for the explicit Eulerian code while Figures 8, 9, and 10 are for the

implicit Eulerian code.

Figure 11 shows one more pressure plot with the corresponding velocity

and density plots. These data were generated by the explicit Eulerian code

with six processes.

Note that as explained in Section IV, the implicit differencing will

model the material behavior less accurately. Also, as discussed in Sec-

tions IV and VI, the implicit simulations done with multiple processes should

not be expected to produce identical results. Indeed, the block implicit

algorithms introduce spatial points of greater accuracy.

b

28

.-...-....- ,.. -.-........... ... ;: .......... ... ..................... ... ..... .. '. . . ... .. .S.....



33

.006 Seconds .024 Seconds
1) 2 Time steps U -8 Time steps

E -4E

(1) U)

M11 SOO le"111 less %sea as e S o" ls S

DISTANCE (centimeters) DISTANCE (centimeters)

3- 3-

4).048 Seconds .072 Seconds
16 Time steps C24 Time steps

WU W

w w
cc 0c

MI I

DISTANCE (centimeters) DISTANCE (centimeters)

.095 Seconds
32 Time steps

E

co
U)

DISTANCE (centimeters)

Figure 1. The explicit Lagrangian simulation models the rarefaction and shock
as square waves when the CFL number equals one and the equation of state is a
straight line approximation to an isentropic ideal gas law.
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Figure 4. The implicit differencing in a Lagrangian simulation introduces

terms that have the effect of viscosity on the material fl ow.
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Figure 7. The data from the explicit Eulerian code remains the same for
simulations done with multiple processes.
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Figure 9. The implicit Eulerian simulation with two processes has one
boundary seam at which the data are computed more accurately.
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Figure 10. The implicit Eulerian simulation with six processes has five
boundary seams at which the data are computed more accurately.
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Figure 11. The large negative pressure gradient in the material induces
positive velocities as the material bursts out from the left half of the
pipe. These results were generated by the explicit Eulerian code using six
processes.
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